ࡱ> TS I\pA. Sierputer Support Ba==x--_8X@"1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman1.Times New Roman""#,##0;\-""#,##0""#,##0;[Red]\-""#,##0""#,##0.00;\-""#,##0.00#""#,##0.00;[Red]\-""#,##0.005*0_-""* #,##0_-;\-""* #,##0_-;_-""* "-"_-;_-@_-,)'_-* #,##0_-;\-* #,##0_-;_-* "-"_-;_-@_-=,8_-""* #,##0.00_-;\-""* #,##0.00_-;_-""* "-"??_-;_-@_-4+/_-* #,##0.00_-;\-* #,##0.00_-;_-* "-"??_-;_-@_-                + ) , *  " # " ! ! # "   "8@ "8@ @ "8@ @ "8!@ @ "8@ "8@ @ "8@ @ "8!@ @ "8!@ @ "8!@ @ "8!!@ @ "8!@   "8 "8  ( ! ! ! ! "8!@@ "8!@ "8 ! @ "8@@ "8@ "8  @ "8@@ "8@ "8  @ ! `$Pearson's correlation 8Summary of variablesEOutliersX Uniformity,Correlations between variablesPearson's CorrelationWt (mg)%N C:N Ratio Ca (meq/100g) Na (meq/100g) K (meq/100g)%LOI Mg (meq/100g)%Moisture Loss%CWtC:NCaNaKMgSummary of VariablesSizeMeanStDevMinLQMedianUQMax0Relation of potential outliers to the main plots5A5B5C5D5E5FLow % C Low wt (mg) Low C:N ratioLow % N Low % LOI4A4B4C4D4E4FHigh C:N ratio3A3B3C3D3E3F High % N & CHigh Na High % moist High % LOI2A2B2C2D2E2F1A1B1C1D1E1FHigh CaHigh MgLow pHHigh % C Uniformity across the experiment Weight (mg)wand a test of the differences between the treatments assigned to the plots does not detect any significant differences. C:N ratiokThere are no significant differences in C:N ratio between either the blocks or the columns of this design, dThere are no significant differences in %N between either the blocks or the columns of this design, dThere are no significant differences in %C between either the blocks or the columns of this design, vThere are significant differences between the blocks of the experiment, with blocks 5 and 2 having significantly lowerymean Ca values (1.597 and 1.578 respectively) than blocks 4, 3 and 1 (2.838, 2.895 and 3.560 respectively). There are nowsignificant differences between the values of Ca for the columns of this design. The difference between the treatmentswassigned to the plots of the experiment would not be detected as significant but the block differences are significant.yThere are significant differences between the blocks of the experiment, with blocks 5, 4 and 2 having significantly lowervmean Na values (0.132, 0.137 and 0.132 respectively) than blocks 3 and 1 (0.148 and 0.153 respectively). There are nowsignificant differences between the values of Na for the columns of this design. The difference between the treatmentsxThere are significant differences between the columns of the experiment, with columns A and B having significantly lowerusignificant differences between the values of K for the blocks of this design. The difference between the treatmentsassigned to the plots of the experiment would not be detected as significant and the block differences are also not significant.ymean Mg values (1.035 and 0.890 respectively) than blocks 4, 3 and 1 (1.617, 1.623 and 2.048 respectively). There are nowsignificant differences between the values of Mg for the columns of this design. The difference between the treatmentsABCDEF% Moisture LossqThere are no significant differences in % moisture loss between either the blocks or the columns of this design, % Loss on IgnitiontThere are no significant differences in % loss on ignition between either the blocks or the columns of this design, There are significant differences between both the blocks and the columns of the design, with blocks 5 and 2 having significantlyand 4.612 respectively). Analysis of the differences between the treatments assigned to the plots does not detect any significance,1 but the block differences remain as significant. pH (CaCl2) pH (H2O)There are significant differences between the mean pH values for both the blocks and the columns, with blocks 1 and 2 having significantlyhad mean pH values of 3.764 and 3.868 respectively and columns A, B, D and D had values of 4.080, 3.928, 3.966 and 3.998 respectively.|lower pH values (3.838 and 3.880 respectively) than blocks 5, 4 and 3 (3.923, 3.993 and 4.035 respectively). Column E and FNevertheless, analysis of the differences between the treatments assigned to the plots does not detect any significance for eitherthe treatment or block means.mean K values (0.556 and 0.642 respectively) than columns C, D, E and F (0.660, 0.750, 0.710 and 0.758 respectively). There are nothe error term in the analysis of a randomised block design is essentially a measure of the interaction between blocks and treatments.pHThe coefficients of the correlations between each pair of variables over the 30 plot values are given in the table above, together withdthe probabilities of there being a zero correlation in the half matrix above the principal diagonal.The arithmetic mean, standard deviation, minimum, lower quartile, median, upper quartile and maximum for each of the 12 variablesWdetermined for the 30 plots on the experimental site are summarised in the table above.gThere are no significant differences in weight between either the blocks or the columns of this design, If, therefore, any of the processes to be investigated in this programme are likely to interact with Ca, Na, Mg or pH, the effectivenesslower pH values (4.537 and 4.552 respectively) than blocks 4, 3 and 1 (4.603, 4.710 and 4.805 respectively). Column A of the design %MLhas the highest mean pH value (4.764) and column F the lowest (4.556), with columns 2, 3, 4 and 5 intermediate (4.594, 4.676, 4.646Thus, preliminary tests of the uniformity of the soil variables does not suggest any initial differences in the treatments assigned to the plots, but there are initial detectable differences between the blocks for Ca, Na, Mg, pH (H2O) and pH (CaCl2). The randomisedc ds tblock design uses the blocks of the design to reduce the effects of site differences, apparently effectively in this case. However, 1of the design may be reduced for those processes.zu et he: s {  e men# h W  5 7 h _si anpweBanf $ dly) than blocks 4, 3 and 1 (2.838, 2.895 and 3.560 respe(Н0ely). There are nowsignificant differences between the values of Ca for the columns of thazp0bbmentswassigned to the plots of theeriment S0bt00nificant but the X@" I [<D  dMbP?_*+%MHP LaserJet 5/5M PostScriptw 3dXXT~pjRdCustom page 1|CCCustom page 2|CCCustom page 3|CC" dXX??U} U } } U   ;T0 b b b    b b      b0b0 //         ~ ? ~ >@/ݤ@jt?Zd;O @Fx@K7 @x&1@ X9v>@~ @ ~ >@S?ˡE?$G@J@L@M@P@ ~ @  >@ȇ@~jt?$ @h@̇@@h@ ~ @ ~ >@X96+@;On?$d@@.@ĕ@ė@ ~ @ ~ >@ʡE@Mb?$@Q@d@Hp@ t@@ ~ @ 6 >@,@?(@*@,@.@2@ ~ @ ~ >@ |?5^? B`"۹?$ H@N@P@S@@V@ ~  @  ~ >@ J +? ʡE?$ M@[@c@ g@r@ ~ "@  ~ >@ "@ MbX9?$ w@{@h}@@p@ ~ $@ ~ >@ -0@ Zd;?$ H@Ԙ@@@h@ ~ &@ i~ >@Mb@l?${@@|@@~@ ~ (@ h~ >@Fx@S?$v@x@x@@y@z@  t u,|" zvlvvVvvvvvv  >@  I  -GW  dMbP?_*+%M_Lexmark 5700` 4dXX  Lexmark 5700 Series ColorFineLPT1:LPT1:" dXX??U} } U} U} U } * } U  ;T0bb b@@@@b@ @b  @ @ @ @ @ @ @b@0@b@0@ @b b@@@s@b@,b@bb@@b@@ /2///////////          ! 7" 89 7# 89 7#  89  7#  89     4$ 56 4% 56 "#$  "#$ "#$ "#$ 4& 56 "!$ "#$  "#$ "#$ "#$ "#$ "!$ "#$  "#$ "#$ "#$ %&' %(' %&'  %&' %&' %&' ' (  )  * )+ ),   7- 89  7# 89 7# 89   "#$ "!$ "#$ "#$ "#$ "#$ "#$ "!$ "#$ "#$ "#$ "#$ "#$ "!$ "#$ "#$ "#$ "#$ %&' %(' %&' %&' %&' %&' . /  0  1 2 3 7# 89 74 89         "#$ 4- 56 "#$  "#$ "#$ "#$ "#$ 45 56 "#$  "#$ "#$ "#$ "#$ 46 56 "#$  "#$"#$"#$ %&' 17 23 %&'  %&' %&' %&' 8 9  :  ; < =             "#$ "!$ "#$  "#$ "#$ "#$ "#$ "!$ "#$  "#$ "#$ "#$ "#$ "!$ "#$  "#$ "#$ "#$ %&' %(' %&'  %&' %&' %&'* +> *** +? ***  +@  ***  +A *** +B** +C* 74 89     7D  89   7# 89 4- 56 "!$ "#$  4E  56 "#$ 4F 56 45 56 "!$ "#$  "#$ "#$ 4G 56 46 56 "!$ "#$  "#$ "#$ 4- 56 17 23 %(' %&'  %&' %&' 17 23DlD$hxl``h````hxlldlh`````xx> @          I $^]~fmRu |  dMbP?_*+% MHP LaserJet 5/5M (Soil Bio)w 3MXXR;6pRMCustom page 1|CCCustom page 2|CCCustom page 3|CC" MXX??U} } U }  } } U   ;T0 b b b    b b      H 5  ,  L vT v q  ?B  C gg /H /// I [ \ ] ^ _ `?@w/]@Zd;O @A`Т@5^I @B`"@~ @/$@uV@;On@~ Ā@Fx@X9v>@~ @7A`P@x&1@L7A`@~ 4@V-@mR@~ @?5^I @+@x&1@K7 @mR@V-@~ @Mb@}?5^@F@~ |@K7 @K7A@ 0v 00000000 0J 000000000    [ \ ] ^ _ `?H@G@"~?O@J@J@0@L@N@J@L@K@J@0@O@P@K@N@J@K@0@L@L@L@I@J@M@0@M@N@J@L@J@O@ 0M00000000 0J000000000  [ \ ] ^ _ `0? @@@@@@@0@І@Ћ@h@@@@@0@@h@@@@@0@@@@@@@(@0@@8@`@x@@X@<$Tpvvzv(* TJ4444(*T4444 T0! b# b$ b% & ' ( b) b+ , . / 0 1 H2 53 4 ,6 7 L8 vT9 v; q< = ?B> ? C 0N 00000000 !0J!000000000 #K $[ $\ $] $^ $_ $`0%?d@T@@ @@ @0&@@<@@ĕ@@+@0'@(@ė@@+@T@ԕ@0(@H@<@@@8@@0)@@@@@@@ +0L+00000000 ,0J,000000000 . /[ /\ /] /^ /_ /`00? i@`h@p@a@@Q@U@01@@j@ t@s@v@pp@l@02@@Pu@@k@u@@ n@03@r@d@[@b@@Y@^@04@t@ p@Pu@@ x@s@ 60O6000000000 70P7000000000 80Q8000000000 90R9000000000 ; <[ <\ <] <^ <_ <`0=?.@*@,@(@*@(@0>@,@,@,@,@,@(@0?@.@2@*@.@,@,@:2(*T44444(*T44444****T44@ T0A bC bD bE F H I bJ bK L M N P Q HR 5S U ,V W LX vTY vZ q[ ] ?B^ _ C0@@.@,@*@*@(@(@0A@.@,@0@0@,@1@ C0SC000000000 D0TD000000000 E0UE000000000 F0RF000000000 H I[ I\ I] I^ I_ I`0J?H@Q@@S@@V@@U@S@0K@M@M@Q@T@@P@S@0L@I@O@M@N@R@S@0M@N@@P@M@O@O@@T@0N@M@P@@P@T@Q@Q@ P0VP0000000000 Q0oQ0000000000 R0WR000000000 S0XS0000000000 U V[ V\ V] V^ V_ V`0W?]@@[@c@[@P@Q@0X@]@g@f@i@@c@`@0Y@?`j@? g@c@^@0Z@c@W@P@?M@T@0[@d@b@j@r@k@g@ ]0O]000000000 ^0Y^000000000 _0Z_000000000 :$44****T44444,,*,T44444**` T0c bd be bf g h i bk bl o p q r s Ht 5u w ,x { L| vT} v~ q  `0R`000000000 ca d[ d\ d] d^ d_ d`0e?@y@{@0|@}@~@y@0f@@{@@ ~@@~@`{@0g@w@p@@@@`|@P|@0h@@~@{@}@z@|@0i@}@~@@|@P}@8@ k0bk000000000 l0Jl000000000 oc p[ p\ p] p^ p_ p`0q?H@X@Ԙ@@ @L@0r@@p@@@<@@0s@Ě@@h@@|@@0t@p@@@@Ж@@0u@@@@@@h@ w0dw000000000 x0Jx000000000 {i |[ |\ |] |^ |_ |`0}?@{@|@@|@{@0~@}@|@@}@p|@|@{@0@}@}@|@}@@}@4|*T44444**T44444**T44 T0 b b b    b b      H 5  ,  L vT v q  ?B  C gg0@ ~@P|@|@{@{@{@0@@`}@~@~@}@}@ 0e0000000000 0x0000000000 0z0000000000 0f0000000000 0g 000 h [ \ ] ^ _ `0?z@x@0y@w@w@w@0@y@x@@@x@x@0@y@`y@x@y@py@x@0@Py@@x@px@x@x@v@0@x@w@x@y@ w@v@ 0j00000000000 0l0000000000 0k00000000000 0m0000000000 0n0- :{:::::::::: :|::::::::::: :}:::::::::: :p::::::::::: 0w00000000000 0~ 000<44,,,,^44444.,., ,.,..>@@d```j-   !! ++,, 66 77 88 99 CC DD EE FF PP QQ RR SS ]] ^^ __ `` kk ll ww xx     Oh+'0@H\x  Carly KennyElizabeth SkinnereMicrosoft Excel@0T@0s`  ՜.+,D՜.+,d  PX|  Cosmic Cazza Communicationsj Pearson's correlationSummary of variables Outliers Uniformity  Worksheets 6> _PID_GUIDAN{80EE1280-7956-11D2-B9B0-444553540000}  !"#$%&'()*+,-./0123456789:;<=>?@ABDEFGHIJLMNOPQRRoot Entrys freCompresses and d Foft `\bCoWorkbookand decompresses MicrosM audio data.SummaryInformation(CDocumentSummaryInformation8K